Package 'ssmsn'

Title: Scale-Shape Mixtures of Skew-Normal Distributions
Description: It provides the density and random number generator for the Scale-Shape Mixtures of Skew-Normal Distributions proposed by Jamalizadeh and Lin (2016) <doi:10.1007/s00180-016-0691-1>.
Authors: Rocio Maehara and Luis Benites
Maintainer: Luis Benites <[email protected]>
License: GPL (>= 2)
Version: 0.2.0
Built: 2024-11-04 03:32:49 UTC
Source: https://github.com/lbenitesanchez/ssmsn

Help Index


Scale-Shape Mixtures of Skew-Normal Distributions

Description

It provides the density and random number generator.

Details

Package: ssmsn
Type: Package
Version: 0.2
Date: 2017-01-31
License: GPL (>=2)

Author(s)

Rocio Maehara [email protected] and Luis Benites [email protected]

References

Jamalizadeh, Ahad and Lin, Tsung-I (2016). A general class of scale-shape mixtures of skew-normal distributions: properties and estimation. Computational Statistics, 1-24.

See Also

ssmsn,

Examples

#See examples for the ssmsn function linked above.

Scale-Shape Mixtures of Skew-Normal Distributions

Description

It provides the density and random number generator.

Usage

dssmsn(x, mu= NULL,sigma2= NULL,lambda= NULL,nu= NULL,family="skew.t.t")
rssmsn(n,mu= NULL,sigma2= NULL,lambda= NULL,nu= NULL,family="skew.t.t")

Arguments

x

vector of observations.

n

numbers of observations.

mu

location parameter.

sigma2

scale parameter.

lambda

skewness parameter.

nu

degree freedom

family

distribution family to be used in fitting ("skew.t.t", "skew.generalized.laplace.normal, "skew.slash.normal")

Details

As discussed in Jamalizadeh and Lin (2016) the scale-shape mixture of skew-normal (SSMSN) distribution admits the following conditioning-type stochasctic representation

Y=μ+στ11/2[Z1(Z2<λf1/2Z1)],Y=\mu + \sigma \tau_1^{-1/2}[Z_1 | (Z_2 < \lambda f^{-1/2} Z_1)],

where f=τ1f = \tau_1/τ2\tau_2 and (Z1,Z2)(Z_1,Z_2) and (τ1,τ2\tau_1,\tau_2) are independent. Alternatively the SSMSN distribution can be generated via the convolution-type stochastic representation, given by

Y=μ+σ(τ11/2f1/2f+λ2Z2+λτ11/2f+λ2Z1).Y=\mu + \sigma \left(\frac{\tau_1^{-1/2} f^{1/2}}{\sqrt{f + \lambda^2}}Z_2 + \frac{\lambda \tau_1^{-1/2}}{\sqrt{f + \lambda^2}}|Z_1|\right).

Value

dssmsn gives the density, rssmsn generates a random sample.

The length of the result is determined by n for rssmsn, and is the maximum of the lengths of the numerical arguments for the other functions dssmsn.

Author(s)

Rocio Maehara [email protected] and Luis Benites [email protected]

References

Jamalizadeh, Ahad and Lin, Tsung-I (2016). A general class of scale-shape mixtures of skew-normal distributions: properties and estimation. Computational Statistics, 1-24.

Examples

rSTT  <- rssmsn(n=1000,mu=-4,sigma2=1,lambda=1,nu=c(3,4),"skew.t.t");hist(rSTT)
rSGLN <- rssmsn(n=1000,mu=-4,sigma2=1,lambda=1,nu=3,"skew.generalized.laplace.normal");hist(rSGLN)
rSSN  <- rssmsn(n=1000,mu=-4,sigma2=1,lambda=1,nu=3,"skew.slash.normal");hist(rSSN)

dSTT  <- dssmsn(0.5,mu=-4,sigma2=1,lambda=1,nu=c(3,4),"skew.t.t")
dSGLN <- dssmsn(0.5,mu=-4,sigma2=1,lambda=1,nu=3,"skew.generalized.laplace.normal")
dSSN  <- dssmsn(0.5,mu=-4,sigma2=1,lambda=1,nu=3,"skew.slash.normal")