Title: | Scale-Shape Mixtures of Skew-Normal Distributions |
---|---|
Description: | It provides the density and random number generator for the Scale-Shape Mixtures of Skew-Normal Distributions proposed by Jamalizadeh and Lin (2016) <doi:10.1007/s00180-016-0691-1>. |
Authors: | Rocio Maehara and Luis Benites |
Maintainer: | Luis Benites <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.2.0 |
Built: | 2024-11-04 03:32:49 UTC |
Source: | https://github.com/lbenitesanchez/ssmsn |
It provides the density and random number generator.
Package: | ssmsn |
Type: | Package |
Version: | 0.2 |
Date: | 2017-01-31 |
License: | GPL (>=2) |
Rocio Maehara [email protected] and Luis Benites [email protected]
Jamalizadeh, Ahad and Lin, Tsung-I (2016). A general class of scale-shape mixtures of skew-normal distributions: properties and estimation. Computational Statistics, 1-24.
#See examples for the ssmsn function linked above.
#See examples for the ssmsn function linked above.
It provides the density and random number generator.
dssmsn(x, mu= NULL,sigma2= NULL,lambda= NULL,nu= NULL,family="skew.t.t") rssmsn(n,mu= NULL,sigma2= NULL,lambda= NULL,nu= NULL,family="skew.t.t")
dssmsn(x, mu= NULL,sigma2= NULL,lambda= NULL,nu= NULL,family="skew.t.t") rssmsn(n,mu= NULL,sigma2= NULL,lambda= NULL,nu= NULL,family="skew.t.t")
x |
vector of observations. |
n |
numbers of observations. |
mu |
location parameter. |
sigma2 |
scale parameter. |
lambda |
skewness parameter. |
nu |
degree freedom |
family |
distribution family to be used in fitting ("skew.t.t", "skew.generalized.laplace.normal, "skew.slash.normal") |
As discussed in Jamalizadeh and Lin (2016) the scale-shape mixture of skew-normal (SSMSN) distribution admits the following conditioning-type stochasctic representation
where /
and
and (
) are independent. Alternatively the SSMSN distribution can be generated via the convolution-type stochastic representation, given by
dssmsn
gives the density, rssmsn
generates a random sample.
The length of the result is determined by n for rssmsn
, and is the maximum of the lengths of the numerical arguments for the other functions dssmsn
.
Rocio Maehara [email protected] and Luis Benites [email protected]
Jamalizadeh, Ahad and Lin, Tsung-I (2016). A general class of scale-shape mixtures of skew-normal distributions: properties and estimation. Computational Statistics, 1-24.
rSTT <- rssmsn(n=1000,mu=-4,sigma2=1,lambda=1,nu=c(3,4),"skew.t.t");hist(rSTT) rSGLN <- rssmsn(n=1000,mu=-4,sigma2=1,lambda=1,nu=3,"skew.generalized.laplace.normal");hist(rSGLN) rSSN <- rssmsn(n=1000,mu=-4,sigma2=1,lambda=1,nu=3,"skew.slash.normal");hist(rSSN) dSTT <- dssmsn(0.5,mu=-4,sigma2=1,lambda=1,nu=c(3,4),"skew.t.t") dSGLN <- dssmsn(0.5,mu=-4,sigma2=1,lambda=1,nu=3,"skew.generalized.laplace.normal") dSSN <- dssmsn(0.5,mu=-4,sigma2=1,lambda=1,nu=3,"skew.slash.normal")
rSTT <- rssmsn(n=1000,mu=-4,sigma2=1,lambda=1,nu=c(3,4),"skew.t.t");hist(rSTT) rSGLN <- rssmsn(n=1000,mu=-4,sigma2=1,lambda=1,nu=3,"skew.generalized.laplace.normal");hist(rSGLN) rSSN <- rssmsn(n=1000,mu=-4,sigma2=1,lambda=1,nu=3,"skew.slash.normal");hist(rSSN) dSTT <- dssmsn(0.5,mu=-4,sigma2=1,lambda=1,nu=c(3,4),"skew.t.t") dSGLN <- dssmsn(0.5,mu=-4,sigma2=1,lambda=1,nu=3,"skew.generalized.laplace.normal") dSSN <- dssmsn(0.5,mu=-4,sigma2=1,lambda=1,nu=3,"skew.slash.normal")