Package 'ALDqr'

Title: Quantile Regression Using Asymmetric Laplace Distribution
Description: EM algorithm for estimation of parameters and other methods in a quantile regression.
Authors: Luis Benites Sanchez, Christian E. Galarza, Victor H. Lachos
Maintainer: Luis Benites Sanchez <[email protected]>
License: GPL (>= 3.0)
Version: 1.0
Built: 2024-11-16 03:03:10 UTC
Source: https://github.com/lbenitesanchez/aldqr

Help Index


Australian institute of sport data

Description

Data on 102 male and 100 female athletes collected at the Australian Institute of Sport.

Format

This data frame contains the following columns:

Sex

(0 = male or 1 = female)

Ht

height (cm)

Wt

weight (kg)

LBM

lean body mass

RCC

red cell count

WCC

white cell count

Hc

Hematocrit

Hg

Hemoglobin

Ferr

plasma ferritin concentration

BMI

body mass index, weight/(height)**2

SSF

sum of skin folds

Bfat

Percent body fat

Label

Case Labels

Sport

Sport

References

S. Weisberg (2005). Applied Linear Regression, 3rd edition. New York: Wiley, Section 6.4


Diagnostics for Quantile Regression Using Asymmetric Laplace Distribution

Description

Return case-deletion estimating the parameters in a quantile regression

Usage

diag.qr(y,x,tau,theta)

Arguments

y

vector of responses

x

the design matrix

tau

the quantile to be estimated, this is generally a number strictly between 0 and 1.

theta

parameter estimated

Value

Hessian and gradient matrix. Also the generalized cook distance (GDi), approximation of the likelihood distance (QDi)

Author(s)

Luis Benites Sanchez [email protected], Christian E. Galarza [email protected], Victor Hugo Lachos [email protected]

References

[1] Koenker, R. W. (2005). Quantile Regression, Cambridge U. Press. [2] Yu, K. & Moyeed, R. (2001). Bayesian quantile regression. Statistics & Probability Letters, 54 (4), 437 to 447. [3] Kotz, S., Kozubowski, T. & Podgorski, K. (2001). The laplace distribution and generalizations: A revisit with applications to communications, economics, engineering, and finance. Number 183. Birkhauser.

Examples

## Not run: 

##############################################################
### Graphic of the generalized Cook distance for data(AIS) ###
##############################################################
#Dados 
data(ais, package="sn")
attach(ais)
sexInd <- (sex=="female") + 0
x      <- cbind(1,LBM,sexInd)
y      <- BMI


#Percentile
 perc         <- 0.5

res           <- EM.qr(y,x,perc)
diag          <- diag.qr(y,x,perc,res$theta)
HessianMatrix <- diag$MatrizQ
Gradiente     <- diag$mdelta
GDI           <- c()
for (i in 1:202) {
 GDI[i] <- t(Gradiente[,i])
}

  
#Seccion de los graficos
 par(mfrow = c(1,1))
 plot(seq(1:202),GDI,xlab='Index',ylab=expression(paste(GD[i])),main='p=0.1')
 abline(h=2*(4+1)/202,lty=2)
 identify(GDI,n=1) 

 plot(seq(1:202),GDI,xlab='Index',ylab=expression(paste(GD[i])),main='p=0.5')
 abline(h=2*(4+1)/202,lty=2)
 identify(GDI,n=1) 

 plot(seq(1:202),GDI,xlab='Index',ylab=expression(paste(GD[i])),main='p=0.9')
 abline(h=2*(4+1)/202,lty=2)
 identify(GDI,n=4) 


#############################################################
### Graphic of the likelihood displacemente for data(AIS) ###
#############################################################
#Dados 
 data(ais, package="sn"); attach(ais); sexInd<-(sex=="female")+0; x=cbind(1,LBM,sexInd); y=BMI

#Percentile
 perc          <- 0.9
 n             <- nrow(x)

 res           <- EM.qr(y,x,perc)
 
 thetaest      <- res$theta
 sigmaest      <- thetaest[4]
 betaest       <- matrix(thetaest[1:3],3,1)

 taup2         <- (2/(perc*(1-perc)))
 thep          <- (1-2*peGraphic of the generalized Cook distance for data(AIS)rc)/(perc*(1-perc))

 diag          <- diag.qr(y,x,perc,thetaest)

 HessianMatrix <- diag$MatrizQ
 Gradiente     <- diag$mdelta

 sigma         <- sigmaest
 beta          <- betaest 

 muc           <- (y-x
 delta2        <- (y-x
 gamma2        <- (2+thep^2/taup2)/sigma

 vchpN         <- besselK(sqrt(delta2*gamma2), 0.5-1)
                  /(besselK(sqrt(delta2*gamma2), 0.5))*(sqrt(delta2/gamma2))^(-1)
 vchp1         <- besselK(sqrt(delta2*gamma2), 0.5+1)
                  /(besselK(sqrt(delta2*gamma2), 0.5))*(sqrt(delta2/gamma2))
 
 Q             <- -0.5*n*log(sigmaest)-0.5*(sigmaest*taup2)^{-1}*
                  (sum(vchpN*muc^2 - 2*muc*thep + vchp1*(thep^2+2*taup2)))  
 ########################################################
 theta_i       <- thetaest
 sigmaest      <- theta_i[4,]
 betaest       <- theta_i[1:3,]
 sigma         <- sigmaest
 beta          <- betaest
 muc           <- (y-x
 
 delta2        <- (y-x
 gamma2        <- (2+thep^2/taup2)/sigma
 
 vchpN         <- besselK(sqrt(delta2*gamma2), 0.5-1)
                  /(besselK(sqrt(delta2*gamma2), 0.5))*(sqrt(delta2/gamma2))^(-1)
 vchp1         <- besselK(sqrt(delta2*gamma2), 0.5+1)
                  /(besselK(sqrt(delta2*gamma2), 0.5))*(sqrt(delta2/gamma2))

 Q1 <- c()
 for (i in 1:202)
 {
   Q1[i] <- -0.5*n*log(sigmaest[i])-sum(vchpN[,i]*muc[,i]^2 - 2*muc[,i]*thep
     + vchp1[,i]*(thep^2+2*taup2))/(2*(sigmaest[i]*taup2))
 }

 ######################################################## 
 QDi <- 2*(-Q+Q1)

 #Depois de escolger perc guardamos os valores de  QDi
 QDi0.1 <- QDi
 QDi0.5 <- QDi
 QDi0.9 <- QDi

#Seccion de los graficos
 par(mfrow = c(1,1))
 plot(seq(1:202),QDi0.1,xlab='Index',ylab=expression(paste(QD[i])),main='p=0.1')
 abline(h=mean(QDi0.1)+3.5*sd(QDi0.1),lty=2)
 identify(QDi0.1,n=3) 

 plot(seq(1:202),QDi0.5,xlab='Index',ylab=expression(paste(QD[i])),main='p=0.5')
 abline(h=mean(QDi0.5)+3.5*sd(QDi0.5),lty=2)
 identify(QDi0.5,n=3) 

 plot(seq(1:202),QDi0.9,xlab='Index',ylab=expression(paste(QD[i])),main='p=0.9')
 abline(h=mean(QDi0.9)+3.5*sd(QDi0.9),lty=2)
 identify(QDi0.9,n=4) 

## End(Not run)

Quantile Regression Using Asymmetric Laplace Distribution

Description

Return estimating the parameters in a quantile regression

Usage

EM.qr(y, x = NULL, tau = NULL, error = 0.000001 , iter = 2000, envelope=FALSE)

Arguments

y

vector of responses

x

the design matrix

tau

the quantile to be estimated, this is generally a number strictly between 0 and 1.

error

the covergence maximum error

iter

maximum iterations of the EM algorithm.

envelope

confidence envelopes for a curve based on bootstrap replicates

Value

Estimated parameter for a quantile regression fit,standard error, log-likelihood.

Author(s)

Luis Benites Sanchez [email protected], Christian E. Galarza [email protected], Victor Hugo Lachos [email protected]

References

[1] Koenker, R. W. (2005). Quantile Regression, Cambridge U. Press.

[2] Yu, K. & Moyeed, R. (2001). Bayesian quantile regression. Statistics & Probability Letters, 54 (4), 437 to 447.

[3] Kotz, S., Kozubowski, T. & Podgorski, K. (2001). The laplace distribution and generalizations: A revisit with applications to communications, economics, engineering, and finance. Number 183. Birkhauser.

Examples

data(ais, package="sn")
attach(ais)
sexInd <- (sex=="female") + 0
x      <- cbind(1,LBM,sexInd)
y      <- BMI
tau    <- 0.5

## EM.qr
EM.qr(y,x,tau)